题目内容
函数取得最大值时,x=______.
学校要组织一场篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,应邀请__________个球队参加比赛.
若|a|+|b|=|a+b|,则a、b满足的关系是_____.
已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(﹣1,0)、B(3,0),与y 轴的交点为点D,顶点为C,
(1)写出该抛物线的对称轴方程;
(2)当点C变化,使60°≤∠ACB≤90°时,求出a的取值范围;
(3)作直线CD交x轴于点E,问:在y轴上是否存在点F,使得△CEF是一个等腰直角三角形?若存在,请求出a的值;若不存在,请说明理由.
如图,已知抛物线与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线,则下列结论正确的是
_____.(写出所有正确结论的序号)①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.
如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为 【 】
A. 12 B. 16 C. 17.5 D. 20
如图,直线与x轴、轴分别相交于点C、B,与直线相交于
点A.
(1)点B、点C和点A的坐标分别是(0, )、( ,0)、( , );
(2)求两条直线与轴围成的三角形的面积;
(3)在坐标轴上是否存在一点Q,使△OAQ的面积等于6,若存在请直接写出Q点的坐标,若不存在,请说明理由.
下列说法:
①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;
②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;
③如果直角三角形的两边长分别为3、4,那么斜边长为5;
④斜边上的高和一直角边分别相等的两个直角三角形全等.
其中正确的说法有( )
A. 1个 B. 2个 C. 3个 D. 4个
在双曲线上有三点,已知,则的大小关系是_______________________. (用“<”连接)