题目内容
| A、5 | ||
| B、7.5 | ||
C、5
| ||
| D、10 |
分析:根据平行线的性质推出∠ADB=∠ABD,得到AD=AB=CD,根据等腰梯形的性质求出∠C=60°,根据三角形的内角和定理求出∠BDC,根据直角三角形性质求出即可.
解答:解:∵BD平分∠ABC,
∴∠CBD=∠ABD,
∵AD∥BC,
∴∠ADB=∠ABD,
∴∠ADB=∠ABD,
∴AD=AB=CD,
∵AD∥BC,AB=CD,
∴∠C=∠ABC=2∠DBC=60°,
∴∠BDC=180°-∠C-∠DBC=90°,
∴BC=2AD=10,
故选D.
∴∠CBD=∠ABD,
∵AD∥BC,
∴∠ADB=∠ABD,
∴∠ADB=∠ABD,
∴AD=AB=CD,
∵AD∥BC,AB=CD,
∴∠C=∠ABC=2∠DBC=60°,
∴∠BDC=180°-∠C-∠DBC=90°,
∴BC=2AD=10,
故选D.
点评:本题主要考查对等腰梯形的性质,三角形的内角和定理,平行线的性质,等腰三角形的判定,含30度角的直角三角形等知识点的理解和掌握,能求出∠BDC=90°是解此题的关键.
练习册系列答案
相关题目