题目内容
不等式6x﹣4<3x+5的最大整数解是 _________.
下列图形中,既是轴对称图形,又是中心对称图形的有( )
A. 1个 B. 2个 C. 3个 D. 4个
计算:﹣4cos45°+()﹣1+|﹣2|.
请阅读下列材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为 ;
(2)求正方形MNPQ的面积;
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,求AD的长.
计算: .
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的是( )
A. ①②③ B. ②③ C. ③④ D. ①④
某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是( )
A. 9.4×10-7m B. 9.4×107m C. 9.4×10-8m D. 9.4×108m
抛物线y=mx2-2x+1与x轴有且只有一个交点,则m的值是_________.
如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°≈ ,tan22°≈)