题目内容

如图,在△ABC中,AC=6,BC=8,AB=10,以AC为直径作⊙O交AB于点D.
(1)判断直线BC和⊙O的位置关系,并说明理由;
(2)求AD的长.

【答案】分析:(1)由△ABC中,AC=6,BC=8,AB=10,可得∠ACB=90°,再由切线的判定得出结论.
(2)利用切割线定理,先求BD的长.再由AD=AB-BD,求AD的长.
解答:解:(1)∵AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,∴∠ACB=90°,(2分)
又∵AC是⊙O的直径,
∴直线BC和⊙O相切.(4分)

(2)由(1)得BC2=BD•BA,
∴82=BD×10,
∴BD=,(6分)
∴AD=AB-BD=10-.(8分).
点评:考查勾股定理的逆定理,圆的切线的判定及切割线定理的应用.此题对圆中的主要知识进行了综合考查,培养同学们综合运用知识的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网