题目内容

如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2

1.求A、B 两点的坐标及直线AC的函数表达式;

2.P是线段AC上的一个动点,过P点作y轴的平行线交       

抛物线于E点,求线段PE长度的最大值;

3.点G是抛物线上的动点,在x轴上是否存在点F,

 使A、C、F、G这样的四个点为顶点的四边形是

平行四边形?如果存在,直接写出所有满足条件的F

点坐标;如果不存在,请说明理由

 

 

1.令y=0,解得

∴A(-1,0)B(3,0);        (2分)

将C点的横坐标x=2代入得y=-3,∴C(2,-3)(1分)

∴直线AC的函数解析式是y=-x-1        (1分)

2.设P点的横坐标为x(-1≤x≤2)(注:x的范围不写不扣分)

则P、E的坐标分别为:P(x,-x-1),

  E(

∵P点在E点的上方,PE=   (2分)

=-(x1/2)2+9/4        (1分)

∴当时,PE的最大值=        (1分)

3.存在4个这样的点F,分别是

F1(1,0)  F2(-3,0)   F3+4 ,0)  F4(-+4 ,0)(共4分,对1个得1分)

 解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网