题目内容
如图,在直角坐标系中,直线y=6-x与函数
(x>0)的图象相交于点A、B,设A点的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别是
- A.4,12
- B.4,6
- C.8,12
- D.8,6
A
分析:先根据两函数图象的交点在第一象限可知x>0,y>0,再根据两函数有交点可列出关于x、y的方程组,求出x,y的值,再根据矩形的面积及周长公式进行解答即可.
解答:∵两函数图象的交点在第一象限,
∴x>0,y>0,
∴
,
∴
=6-x,
∴x2-6x+4=0,
解得x=3±
,
∵A在B的左边,
∴x=3-
,y=3+
,即A(3-
,3+
),
∴矩形的面积=(3-
)(3+
)=4;
矩形的周长=2(3-
)+2(3+
)=12.
故选A.
点评:本题考查的是一次函数与反比例函数的交点问题,根据题意得出关于x、y的方程组是解答此题的关键.
分析:先根据两函数图象的交点在第一象限可知x>0,y>0,再根据两函数有交点可列出关于x、y的方程组,求出x,y的值,再根据矩形的面积及周长公式进行解答即可.
解答:∵两函数图象的交点在第一象限,
∴x>0,y>0,
∴
∴
∴x2-6x+4=0,
解得x=3±
∵A在B的左边,
∴x=3-
∴矩形的面积=(3-
矩形的周长=2(3-
故选A.
点评:本题考查的是一次函数与反比例函数的交点问题,根据题意得出关于x、y的方程组是解答此题的关键.
练习册系列答案
相关题目