题目内容
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
【答案】分析:根据题意可得到函数关系式,并得到x的取值范围.再得到总利润的函数式,两个式子结合起来,可得到定价.
解答:解:(1)由题意,y=150-10x,0≤x≤5且x为正整数;
(2)设每星期的利润为w元,
则w=(40+x-30)y
=(x+10)(150-10x)
=-10(x-2.5)2+1562.5
∵x为非负整数,
∴当x=2或3时,利润最大为1560元,
又∵销量较大,
∴x=2,即当售价为42元时,每周的利润最大且销量较大,最大利润为1560元.
点评:利用了二次函数的性质,以及总利润=售价×销量.
解答:解:(1)由题意,y=150-10x,0≤x≤5且x为正整数;
(2)设每星期的利润为w元,
则w=(40+x-30)y
=(x+10)(150-10x)
=-10(x-2.5)2+1562.5
∵x为非负整数,
∴当x=2或3时,利润最大为1560元,
又∵销量较大,
∴x=2,即当售价为42元时,每周的利润最大且销量较大,最大利润为1560元.
点评:利用了二次函数的性质,以及总利润=售价×销量.
练习册系列答案
相关题目