题目内容
在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,| 1 |
| 2 |
| 1 |
| 3 |
分析:综合考查等可能条件下的概率和一次函数及坐标系的知识,先求出中任取一张时所得点的坐标数,再画出图象交点个数,由图象上各点的位置直接解答即可.
解答:
解:由题意得,所得的点有5个,分别为(1,1)(2,
)(3,
)(
,2)(
,3);
再在平面直角坐标系中画出直线y=-x+3与两坐标轴围成的△AOB.在平面直角坐标系中描出上面的5个点,可以发现落在△AOB内的点有(1,1)(2,
)(
,2),所以点P落在△AOB内的概率为
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
再在平面直角坐标系中画出直线y=-x+3与两坐标轴围成的△AOB.在平面直角坐标系中描出上面的5个点,可以发现落在△AOB内的点有(1,1)(2,
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 5 |
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
.
| m |
| n |
练习册系列答案
相关题目