题目内容
用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.
解:四个.如图所示:
△ABC中,AD⊥BC,AE平分∠BAC交BC于点E. (1)∠B=30°,∠C=70°,求∠EAD的大小. (2)若∠B<∠C,则2∠EAD与∠C-∠B是否相等?若相等,请说明理由.
将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= _____ .
在平面内,由一些线段________________相接组成的_____________叫做多边形。
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 _________ .
一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )
A.
5
B.
5或6
C.
5或7
D.
5或6或7
已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 _________ .
如图,在等边△ABC中,取BD=CE=AF,且D,E,F非所在边中点,由图
中找出3个全等三角形组成一组,这样的全等三角形的组数有( )
2
3
4
如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD