题目内容
已知
是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
![]()
(1)如图①,若
,
,求
的长(结果保留根号);
(2)如图②,若
为
的中点,求证:直线
是⊙
的切线.
【答案】
(1)
;(2)证明见试题解析.
【解析】
试题分析:(1)易证PA⊥AB,再通过解直角三角形求解;
(2)本题连接OC,证出OC⊥CD即可.首先连接AC,得出直角三角形ACP,根据直角三角形斜边上中线等于斜边一半得CD=AD,再利用等腰三角形性质可证∠OCD=∠OAD=90°,从而解决问题.
试题解析:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得
.
(2)如图,连接OC、AC.∵AB是⊙O的直径,∴∠BCA=90°,又∵∠ACP=180°﹣∠BCA=90°,在Rt△APC中,D为AP的中点,∴CD=
AP=AD,∴∠4=∠3,又∵OC=OA,∴∠1=∠2,∵∠2+∠4=∠PAB=90°,∴∠1+∠3=∠2+∠4=90°,即OC⊥CD.∴直线CD是⊙O的切线.
![]()
考点:1.切线的判定与性质;2.勾股定理.
练习册系列答案
相关题目