题目内容
【题目】如图1,OA=2,OB=4,以A点为顶点,AB为腰,在第三象限作等腰Rt△ABC.
(1)求C点的坐标及△ABC的面积;
(2)如图2,P为y轴负半轴上一个动点,当P点在y轴负半轴上向下运动时,若以P为直角顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求证:OP=DE+2.
(3)已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,请在图3作出等腰Rt△FGH,且始终保持∠GFH=90°,若FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0), 当G在y轴的负半轴上沿负方向运动时,以下结论:①m-n为定值;②m+n为定值,请判断其中哪些结论是正确的,并求出其值.
【答案】(1)①C(-6,-2);②10;(2)证明见解析;(3)②,m+n=-4.
【解析】
(1)如图1,过C作CM⊥x轴于M点,则可以求出△MAC≌△OBA,可得CM=OA=1,MA=OB=2,故点C的坐标为(-3,-1);再由勾股定理求出AB、AC的长即可求出△ABC的面积;
(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ,利用三角形全等的判定定理可得△AOP≌△PQD(AAS),进一步可得PQ=OA=2,即OP-DE=2,从而得到结论;
(1)①如图1,过C作CM⊥x轴于M点,
![]()
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中
,
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(-6,-2).
②在Rt△AOB中,AB=AC=
,
∴S△ACB=
ACAB=10.
(2)证明:如图2,过D作DQ⊥OP于Q点,则DE=OQ
![]()
∴OP-DE=OP-OQ=PQ,
∵∠APO+∠QPD=90°,
∠APO+∠OAP=90°,
∴∠QPD=∠OAP,
在△AOP和△PQD中,
,
∴△AOP≌△PQD(AAS).
∴PQ=OA=2.
即OP = DE+2.
(3)结论②是正确的,m+n=-4,
如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,
![]()
在△FSH和△FTG中,
则△FSH≌△FTG(AAS)
则GT=HS,
又∵G(0,m),H(n,0),点F坐标为(-2,-2),
∴OT═OS=2,OG=|m|=-m,OH=n,
∴GT=OG-OT=-m-2,HS=OH+OS=n+2,
则-2-m=n+2,
则m+n=-4.
【题目】某公司有2位股东,25名工人,从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.
![]()
(1)填写下表
年份 | 2006年 | 2007年 | 2008年 |
工人的平均工资/元 |
|
|
|
股东的平均工资/元 |
|
|
|
(2)假设在以后的若干年中,每年工人的工资和股东的利润都按图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的10倍?