题目内容

17、如图所示,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN∥BC,MN经过点O,若AB=12,AC=18,则△AMN的周长是(  )
分析:由BO平分∠ABC知道∠ABO=∠CBO,由MN∥BC得到∠MOB=∠CBO,然后得到∠MOB=∠ABO,再根据等腰三角形的性质得到OM=BM,同理得到ON=NC,然后就可以求出△AMN的周长.
解答:解:∵BO平分∠ABC,
∴∠ABO=∠CBO,
∵MN∥BC,
∴∠MOB=∠CBO,
∴∠MOB=∠ABO,
∴OM=BM,
又CO平分∠ACB,MN∥BC,
同理得到ON=NC,
∴△AMN的周长=AM+AN+OM+ON
=AM+AN+BM+CN
=AB+AC
=12+18
=30.
故选D.
点评:此题考查了角平分线的性质,平行线的性质,等腰三角形的判定与性质等知识来解题,关键是利用它们把所求线段转换成已知线段从而求出结果.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网