题目内容
分解因式: .
点(2,﹣4)在反比例函数的图象上,则下列各点在此函数图象上的是( )
A.(2,4) B.(﹣1,﹣8) C.(﹣2,﹣4) D.(4,﹣2)
不等式组的解集是 .
如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.
求证:(1)△AOM∽△DMN; (2)求∠MBN的度数.
解一元一次不等式组:,并写出所有的整数解.
一元二次方程总有实数根,则m应满足的条件是( )
A.m>1 B.m=1 C.m<1 D.m≤1
已知:二次函数与轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.
(1)请直接写出点A、B的坐标,并求出该二次函数的解析式。
(2)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合). 过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.
从左到右的变形,是因式分解的为( )
A.(3﹣x)(3+x)=9﹣x2
B.(a-b)(a2+ab+b2)=a3-b3
C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)
D.4x2-25y2=(2x+5y)(2x-5y)
当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为 .