题目内容
仿照例子解题:若| M |
| x+1 |
| N |
| x-1 |
| 1-3x |
| x2-1 |
解:∵
| M |
| x+1 |
| N |
| x-1 |
| 1-3x |
| x2-1 |
| M(x-1)+N(x+1) |
| (x+1)(x-1) |
| 1-3x |
| x2-1 |
则
| Mx-M+Nx+N |
| (x+1)(x-1) |
| 1-3x |
| x2-1 |
| (M+N)x-M+N |
| (x+1)(x-1) |
| -3x+1 |
| x2-1 |
故
|
|
请你按照上面的方法解题:若
| M |
| x+2 |
| N |
| x-2 |
| x-8 |
| x2-4 |
分析:先把分式方程的左边两个式子,通分,再相减,根据例题可得关于M、N的二元一次方程组,解即可求M、N.
解答:解:∵
-
=
,
∴
=
,
∴
=
,
∴
,
解得
,
答:M=2.5,N=1.5.
| M |
| x+2 |
| N |
| x-2 |
| x-8 |
| x2-4 |
∴
| M(x-2)-N(x+2) |
| (x+2)(x-2) |
| x-8 |
| x2-4 |
∴
| (M-N)x-2M-2N |
| x2-4 |
| x-8 |
| x2-4 |
∴
|
解得
|
答:M=2.5,N=1.5.
点评:本题考查了分式的加减法、解二元一次方程组,解题的关键是利用等式的性质,对应项相等.
练习册系列答案
相关题目