题目内容

用一个半径为4 cm,圆心角为120°的扇形纸片围成一个圆锥(接缝处不重叠),求这个圆锥的高.
分析:已知半径为4 cm,圆心角为120°的扇形,就可以求出扇形的弧长,即圆锥的底面周长,从而可以求出底面半径,因为圆锥的高与底面半径、圆锥母线构成直角三角形的三边,就可以根据勾股定理求出圆锥的高.
解答:解:扇形弧长为:l=
120π•4
180
=
8
3
π
cm,
设圆锥底面半径为r,
则:2πr=l=
8
3
π
,所以,r=
4
3
cm,
因为圆锥的高与底面半径、圆锥母线构成直角三角形的三边,
设圆锥高为h,所以h2+r2=42
即:h2=16-
16
9
=
8×16
9
h=
8
2
3
cm,
所以圆锥的高为
8
2
3
cm.
点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网