搜索
题目内容
若边长为
a
的正方形的面积等于长为b+c,宽为b-c的长方形的面积,则以
a
、b、c为三边长的三角形是________三角形.
试题答案
相关练习册答案
p;【答案】.直角解析:
略
练习册系列答案
夺分A计划小学毕业升学总复习系列答案
小学毕业升学总复习金榜小状元系列答案
同步测评卷期末卷系列答案
小学生10分钟口算测试100分系列答案
小学6升7培优模拟试卷系列答案
名校秘题小学霸系列答案
孟建平小学毕业考试卷系列答案
层层递进系列答案
典元教辅冲刺金牌小升初押题卷系列答案
金考卷中考试题汇编45套系列答案
相关题目
O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为
;
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为
;
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为
;
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为
时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为
时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为________;
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为________时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为________时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米
2
,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米
2
,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米
2
,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案