题目内容

如图,点O是△ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,使得
OA′
OA
=
OB′
OB
=
OC′
OC
=3
,连接A′B′,B′C′,C′A′,所得△A′B′C′与△ABC是否相似?证明你的结论.精英家教网
分析:反复利用两边对应成比例且夹角相等的两个三角形相似这一定理可证明这两三角形三边对应成比例即可证得结论.
解答:解:△A′B′C′∽△ABC.(2分)
证明:由已知
OA′
OA
=
OC′
OC
=3
,∠AOC=∠A′OC′
∴△AOC∽△A′OC′,(4分)
A′C′
AC
=
OA′
OA
=3
,同理
B′C′
BC
=3,
A′B′
AB
=3
.(6分)
A′C′
AC
=
B′C′
BC
=
A′B′
AB
.(7分)
∴△A′B′C′∽△ABC.(8分)
点评:考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似;
(2)两边对应成比例且夹角相等的两个三角形相似;
(3)三边对应成比例的两个三角形相似.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网