题目内容
如图9, 已知抛物线与【小题1】求此抛物线的解析式;
【小题2】设G是线段BC上的动点,作GH//AC交AB于H,连接CF,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;
【小题3】若M为抛物线上A、C两点间的一个动点,过M作
【小题1】设二次函数解析式为y=a(x-x1)(x-x2)
∵二次函数与
∴x1 =-4 x2=1……………………………………………….1分
∴y=a(x+4)(x-1)
把C(0,-2)代入y=a(x+4)(x-1)得:a=
故所求二次函数的解析式为y=
=
【小题2】∵S△BGH ="2" S△CGH
∵GH//AC, ,
故E点的坐标为(
【小题3】若设直线
∵ A、
则有
故直线
若设M点的坐标为
MN=
=
即当
(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值;
(2)根据抛物线的解析式可得出C点的坐标,易证得△ABC是直角三角形,则EF⊥BC;△CEF和△BEF同高,则面积比等于底边比,由此可得出CF=2BF;易证得△BEF∽△BAC,根据相似三角形的性质,即可求得BE、AB的比例关系,由此可求出E点坐标;
(3)PQ的长实际是直线AC与抛物线的函数值的差,可设P点横坐标为m,用m表示出P、Q的纵坐标,然后可得出PQ的长与m的函数关系式,根据所得函数的性质即可求出PQ最大时,m的值,也就能求出此时P点的坐标.
练习册系列答案
相关题目