题目内容
【题目】某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
(1)求购买一个甲种足球、一个乙种足球各需多少元;
(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
【答案】(1)购买一个甲种足球需要50元,购买一个乙种篮球需要70元(2)这所学校最多可购买20个乙种足球
【解析】
(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+20)元,
根据题意得:
,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
∴x+20=70.
答:购买一个甲种足球需要50元,购买一个乙种篮球需要70元.
(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
根据题意得:50×(1+10%)(50﹣m)+70×(1﹣10%)m≤2910,
解得:m≤20.
答:这所学校最多可购买20个乙种足球.
练习册系列答案
相关题目