题目内容
【题目】如图,在
中.
,
,
,则
![]()
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】
本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.
解:
![]()
过A作AD交BC于D,使∠BAD=15°,
∵△ABC中.∠ACB=90°,∠ABC=15°,
∴∠BAC=75°,
∴∠DAC=∠BAC-∠BAD=75°-15°=60°,
∴∠ADC=90°-∠DAC=90°-60°=30°,
∴AC=
AD,
又∵∠ABC=∠BAD=15°
∴BD=AD,
∵BC=1,
∴AD+DC=1,
设CD=x,则AD=1-x,AC=
(1-x),
∴AD2=AC2+CD2,即(1-x)2=
(1-x)2+x2,
解得:x=-3+2
,
∴AC=
(4-2
)
=2-![]()
故选:B.
【题目】重庆一中开展了“爱生活爱运动”的活动,以鼓励学生积极参与体育锻炼.为了解学生每周体育锻炼时间,学校在活动之前对八年级同学进行了抽样调査,并根据调査结果将学生每周的体育锻炼时间分为3小时、4小时、5小时、6小时、7小时共五种情况.小明根据调查结构制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
(整理数据)
![]()
“爱生活·爱运动”的活动结束之后,再次抽查这部分学生的体育锻炼时间:
一周体育锻炼时间(小时) | 3 | 4 | 5 | 6 | 7 |
人数 | 3 | 5 | 15 |
| 10 |
(分析数据)
活动之后部分学生体育锻炼时间的统计表
平均数 | 中位数 | 众数 | |
活动之前锻炼时间(小时) | 5 | 5 | 5 |
活动之后锻炼时间(小时) | 5.52 |
|
|
请根据调查信息
(1)补全条形统计图,并计算
_____小时,
______小时,
_____小时;
(2)小亮同学在活动之前与活动之后的这两次调查中,体育锻炼时间均为5小时,根据体育锻炼时间由多到少进行排名统计,请问他在被调查同学中体育锻炼时间排名靠前的是_________(填“活动之前”或“活动之后”),理由是_________________________________.
(3)已知八年级共2000名学生,请估算全年级学生在活动结束后,每周体育锻炼时间至少有6小时的学生人数有多少人?