题目内容


小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.

(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(3分)

(2)当销售单价定为多少元时,每月可获最大利润?每月最大利润是多少?(2分)

(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)(3分)


解:(1)由题意,得:w = (x-20)·y=(x-20)·(),即w  (20≤x≤32)………………………….3

(2)对于函数w 的图像的对称轴是直线.

又∵a=-10<0,抛物线开口向下.

∴当20≤x≤32时,W随着X的增大而增大,

∴当X=32时,W=2160                      …………………………5

答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.

(3)取W=2000得,

解这个方程得:x1 = 30,x2 = 40.

∵a=-10<0,抛物线开口向下.

∴当30≤x≤40时,w≥2000.

∵20≤x≤32

∴当30≤x≤32时,w≥2000.

设每月的成本为P(元),由题意,得:

Px的增大而减小.

∴当x = 32时,P的值最小,P最小值=3600.

答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.

                              ………………………………………8


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网