题目内容
在△ABC中,∠C=90°,如果
,那么sinB的值等于________.
分析:作出草图,根据∠A的正切值设出两直角边分别为5k,12k,然后利用勾股定理求出斜边,则∠B的正弦值即可求出.
解答:
∴设AC=12k,BC=5k,
则AB=
∴sinB=
故答案为:
点评:本题考查了互余两角的三角函数的关系,作出草图,利用数形结合思想更形象直观,此类题目通常都用到勾股定理.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |