题目内容
【题目】如图,点A1,A2,A3…,An在x轴正半轴上,点C1,C2,C3,…,
在y轴正半轴上,点B1,B2,B3,…,Bn在第一象限角平分线OM上,OB1=B1B2=B1B3=…=Bn﹣1Bn=
a,A1B1⊥B1C1,A2B2⊥B2C2,A3B3⊥B3C3,…,
,…,则第n个四边形
的面积是____.
![]()
【答案】
.
【解析】
过点
作
于点E,过点
作
于点F,过点
分别作
于点H,
于点N,先证明:
(AAS),再证明:
(AAS),即可证得:
进而可得:
,同理可得:
,
,…,
.
如图,过点C1作C1E⊥OB1于点E,过点A1作A1F⊥OB1于点F,过点B1分别作B1H⊥OC1于点H,B1N⊥OA1于点N,
∵∠B1OC1=∠B1OA1,
∴B1H=B1N
∵∠HB1N=∠C1BA1=90°
∴∠HB1C1=∠NB1A1
∵∠B1HC1=∠B1NA1=90°
∴△B1HC1≌△B1NA1(AAS)
∴B1C1=B1A1
∵∠C1B1F+∠A1B1F=90°,∠A1B1F=90°
∴∠C1B1F=∠B1A1F
∵∠C1EB1=∠B1FA1=90°
∴△B1C1E≌△A1B1F(AAS)
∴C1E=B1F
∵∠B1OA1=45°
∴∠FA1O=45°
∴A1F=OF
∴C1E+A1F=B1F+OF=OB1
=
C1E+
=
(C1E+A1F)=
=
=
,
同理,
=
=
=
,
![]()
=
=
,
…,
=
=
=
=
.
故答案为:
.
![]()
【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
![]()
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?