搜索
题目内容
图3的梯形
ABCD
中,
F
是
CD
的中点,
AF
⊥
AB
,
E
是
BC
边上的一点,且
AE
=
BE
.若
AB
=
m
(
m
为常数),则
EF
的长为__________.
试题答案
相关练习册答案
练习册系列答案
中考真题及模拟试题汇编系列答案
中考复习指南针江苏系列答案
魔力导学开心练系列答案
中考真题汇编系列答案
命题研究系列答案
名校学案黄冈全程特训卷系列答案
名校期末复习宝典系列答案
名校密卷活页卷系列答案
名校绿卡小学毕业总复习系列答案
名校零距离系列答案
相关题目
如图,在梯形ABCD中,AD∥BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.
(1)求∠ABC的度数;
(2)求证:△CAF为等腰三角形.
在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如图1,当∠B=∠A=90°,我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是
; (用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请在如图3的梯形ABCD中画出剪拼成一个平行四边形的示意图;
(3)在如图4的多边形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一条直线进行剪切,拼成一个平行四边形,请画出拼成的平行四边形的示意图.
在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如图1,当∠B=∠A=90°,我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是________; (用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请在如图3的梯形ABCD中画出剪拼成一个平行四边形的示意图;
(3)在如图4的多边形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一条直线进行剪切,拼成一个平行四边形,请画出拼成的平行四边形的示意图.
在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如图1,当∠B=∠A=90°,我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是______; (用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请在如图3的梯形ABCD中画出剪拼成一个平行四边形的示意图;
(3)在如图4的多边形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一条直线进行剪切,拼成一个平行四边形,请画出拼成的平行四边形的示意图.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案