题目内容
若一直角三角形两边长分别为12和5,则第三边长为( )
A. 13 B. 13或 C. 13或15 D. 15
先化简再求值:÷(x﹣1﹣),其中x=(1)2017×(﹣)2018.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )
A. 2 B. 2.2 C. 2.4 D. 2.5
如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b<ax+3的解集为_____.
如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是( )
A.16 B.14 C.20 D.24
某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?
如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=_____.
如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.
(1)求经过点O,A,E三点的抛物线解析式;
(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;
(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.
在初中学习中,我们知道:点到直线的距离是直线外一点和直线上各点连接的所有线段中,最短的线段(即垂线段)的长度.类比,我们给出点到某一个图形的距离的定义:点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离,记为d(P,图形l).特别地,点P在图形上,则点P到图形的距离为0,即d(P,图形)=0.
(1)若点P是⊙O内一点,⊙O的半径是5,OP=2,则d(P,⊙O)= .
(2)如图1,在平面直角坐标系xOy中,A(4,0).若M(0,2),N(﹣1,0),则d(M,∠AOB)= ,d(N,∠AOB)= .
(3)在正方形OABC中,点B(4,4),如图2,若点P在直线y=3x+4上,且d(P,∠AOB)=2,求点P的坐标;
(4)已知点P(m+1,2m﹣3),以点E(1,0)为圆心,EO长为半径作⊙E,则d(P,⊙E)的最小值是 .