经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

(1)求出y与x的函数关系式

(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?

(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

【答案】(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000; (2)该商品第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.

【解析】(1)根据单价乘以数量,可得利润,可得答案;

(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;

(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.

【解析】
(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000,

当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000;

(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,

当x=45时,y最大=-2×452+180×45+2000=6050,

当50≤x≤90时,y随x的增大而减小,

当x=50时,y最大=6000,

综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;

(3)当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤70,

因此利润不低于4800元的天数是20≤x<50,共30天;

当50≤x≤90时,y=-120x+12000≥4800,解得x≤60,

因此利润不低于4800元的天数是50≤x≤60,共11天,

所以该商品在销售过程中,共41天每天销售利润不低于4800元.

【题型】解答题
【结束】
23

某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网