题目内容
如图,小正方形边长表示,点相对点的位置表述详细且准确的是( )
A. 北偏西方向 B. 南偏东方向
C. 北偏西方向处 D. 南偏东方向处
(-)2的平方根是x,64的立方根是y,则x+y的值为( )
A. 3 B. 7 C. 3或7 D. 1或7
如图∥,那么( )
A. ∠1=∠4 B. ∠1=∠3
C. ∠2=∠3 D. ∠1=∠5
如图,下列推理正确的有 ( )
①∵∠1=∠4,∴BC//AD; ② ∵∠2=∠3,∴ AB//CD;
③ ∵∠BCD+∠ADC=180°,∴ AD//BC;
④ ∵∠1+∠2+∠A=180°,∴ BC//AD;
A. 1个 B. 2个 C. 3个 D. 4个
如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)
在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.
将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是 .
经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.
【答案】(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000; (2)该商品第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.
【解析】(1)根据单价乘以数量,可得利润,可得答案;
(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;
(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
【解析】 (1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000,
当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000;
(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,
当x=45时,y最大=-2×452+180×45+2000=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;
(3)当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤70,
因此利润不低于4800元的天数是20≤x<50,共30天;
当50≤x≤90时,y=-120x+12000≥4800,解得x≤60,
因此利润不低于4800元的天数是50≤x≤60,共11天,
所以该商品在销售过程中,共41天每天销售利润不低于4800元.
【题型】解答题【结束】23
某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
九年级某班在一次考试中对某道单选题的作答情况如图所示,根据统计图,下列判断中错误的是( )
A. 选A的有8人 B. 选B的有4人
C. 选C的有26人 D. 该班共有50人参加考试