题目内容

如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=
240°
240°
分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A+∠C,∠B+∠D,再根据邻补角求出∠EOF,然后求解即可.
解答:解:如图,如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D,
∵∠BOF=120°,
∴∠3=180°-120°=60°,
根据三角形内角和定理,∠E+∠1=180°-60°=120°,
∠F+∠2=180°-60°=120°,
所以,∠1+∠2+∠E+∠F=120°+120°=240°,
即∠A+∠B+∠C+∠D+∠E+∠F=240°.
故答案为:240°.
点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并把各角进行转化是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网