题目内容
在下列二次函数中,其图象对称轴为x=﹣2的是( )
A. y=(x+2)2﹣3 B. y=2x2﹣2 C. y=﹣2x2﹣2 D. y=2(x﹣2)2
如图,把一张对边平行的纸条如图折叠,重合部分是 ( )
A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 无法确定
长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)
A、6.7×105米 B、6.7×106米 C、6.7×107米 D、6.7×108米
在平面直角坐标系中,如图所示的函数图象是由函数y=(x﹣1)2+1(x≥0)的图象C1和图象C2组成中心对称图形,对称中心为点(0,2).已知不重合的两点A、B分别在图象C1和C2上,点A、B的横坐标分别为a、b,且a+b=0.当b<x≤a时该函数的最大值和最小值均与a、b的值无关,则a的取值范围为_____.
已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )
A. 有最大值 2,有最小值﹣2.5 B. 有最大值 2,有最小值 1.5
C. 有最大值 1.5,有最小值﹣2.5 D. 有最大值 2,无最小值
某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
如图,中,.为上的点.以点为圆心作与相切于点.若,,则弧的长为( )
A. B. C. D.