题目内容
电子钟镜子里的像如图所示,实际时间是( )
A.21:10 B.10:21 C.10:51 D.12:01
某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x(人),师生门票总金额为y(元).
(1)分别写出两种优惠方案中y与x的函数表达式;
(2)请通过计算回答,选择哪种购票方案师生门票总费用较少?
化简的结果是:
A、x+1 B、x-1 C、-x D、x
如图,等边△ABC的边长为1 cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC外部,则阴影部分图形的周长为 cm.
如图,已知B、E、F、C在同一直线上,BF=CE, AF=DE,则添加条件 ,可以判断△ABF ≌△DCE.
在直角坐标系xoy中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在P点右侧的反比例函数图像是否存在上点M,使△MBP的面积等于菱形ABCP面积.若存在,试求出满足条件的M点的坐标,若不存在,试说明理由.
已知关于x的一元二次方程
(1)求证:方程有两个不相等的实数根;
(2)若Rt△ABC的两边长是这个方程的两个实数根,第三边的长为5,求k的值.
已知圆的内接正六边形的周长为18,那么圆的半径为 __ .
如图,在△ABC中,∠ABC=90°,BC=6,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.
(1)求BH的长;
(2)若AB=12,试判断∠CBD与∠A的数量关系,请说明理由.