题目内容
如图,线段AB的长为8厘米,C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是________
一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利,另一件亏损,若卖出这两件衣服商店共亏损8元,则a的值为______.
如图, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.
(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明: ∠E+∠F=90°.
(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)
解:(1) ADB∥C,理由如下:
∵∠ADE+∠BCF=180°(已知) ,
∠ADE+∠ADF=180°(平角的定义),
∴∠ADF__________ (______________________),
∴AD∥BC (__________________________);
(2)AB与EF的位置关系是:互相平行.
∵BE平分∠ABC(已知),
∴A∠BC=2∠ABE(角平分线定义).
又∵∠ABC=2∠E(已知),
∴2∠E=2∠ABE (____________________),
∴∠E=∠ABE(____________________),
∴_____________ (________________________).
若点P(x,y)在第四象限,且, ,则x+y等于:
A. -1 B. 1 C. 5 D. -5
如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.
(1)求线段BC的长;
(2)求线段MN的长;
(3)若C在线段AB延长线上,且满足AC﹣BC=b cm,M,N分别是线段AC,BC的中点,你能猜想MN的长度吗?请写出你的结论(不需要说明理由).
如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A点沿纸盒面爬到B点,那么它所行的最短路线的长是________.
已知线段AB和点P,如果PA+PB=AB,那么( )
A. 点P为AB中点 B. 点P在线段AB上 C. 点P在线段AB外 D. 点P在线段AB的延长线上
如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为_____.
如图,正比例函数的图象与反比例函数的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.