题目内容
(1)计算:(
+1)(
-1)=
+
)(
-
)=
)(2-
)=
(2)由以上计算结果,可知
-
(n≥0)的倒数是
-
-
(3)求值
+
+
+
.
| 2 |
| 2 |
1
1
;(| 3 |
| 2 |
| 3 |
| 2 |
1
1
;(2+| 3 |
| 3 |
1
1
(2)由以上计算结果,可知
| n+1 |
| n |
| n+1 |
| n |
| n+1 |
| n |
(3)求值
| 1 | ||
|
| 1 | ||||
|
| 1 | ||
2+
|
| 1 | ||
3+
|
分析:(1)根据平方差公式求出即可;
(2)根据(1)中的结果求出即可;
(3)分别求出每一部分的值,再代入合并同类二次根式即可.
(2)根据(1)中的结果求出即可;
(3)分别求出每一部分的值,再代入合并同类二次根式即可.
解答:解:(1)(
+1)×(
-1)
=2-1
=1,
(
+
)(
-
)
=3-2
=1,
(2+
)(2-
)
=4-3
=1;
(2)从上面的结果可以看出
-
(n≥0)的倒数是(
-
,
(3)从(1)知:
=
-1,
=
-
,
=2-
,
=3-
∴
+
+
+
=
-1+
-
+2-
+3-
=
-1+
-
+2-
+3-2
=4-2
.
故答案为:1,1,1;
-
.
| 2 |
| 2 |
=2-1
=1,
(
| 3 |
| 2 |
| 3 |
| 2 |
=3-2
=1,
(2+
| 3 |
| 3 |
=4-3
=1;
(2)从上面的结果可以看出
| n+1 |
| n |
| n+1 |
| n |
(3)从(1)知:
| 1 | ||
|
| 2 |
| 1 | ||||
|
| 3 |
| 2 |
| 1 | ||
2+
|
| 3 |
| 1 | ||
3+
|
| 8 |
∴
| 1 | ||
|
| 1 | ||||
|
| 1 | ||
2+
|
| 1 | ||
3+
|
=
| 2 |
| 3 |
| 2 |
| 3 |
| 8 |
=
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
=4-2
| 2 |
故答案为:1,1,1;
| n+1 |
| n |
点评:本题考查了分母有理数,平方差公式的应用,关键是能根据求出得出规律.
练习册系列答案
相关题目