题目内容

如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )

A.矩形 B. 菱形 C. 正方形 D. 梯形

 

【答案】

A.

【解析】

试题分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.

∵△ADE绕点E旋转180°得△CFE,

∴AE=CE,DE=EF,

∴四边形ADCF是平行四边形,

∵AC=BC,点D是边AB的中点,

∴∠ADC=90°,

∴四边形ADCF矩形.

故选A.

考点:1. 旋转的性质;2.矩形的判定.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网