题目内容
如图,?ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为________.
分析:由平行四边形的性质及直角三角形的性质,推出△CDF为等边三角形,再根据勾股定理解答即可.
解答:∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴在Rt△CEF中,由勾股定理得:EF=
故答案为2
点评:本题考查平行四边形的性质的运用.解题关键是利用平行四边形的性质结合三角形性质来解决有关的计算和证明.
练习册系列答案
相关题目
| 5 |
| A、当旋转角为90°时,四边形ABEF一定为平行四边形 |
| B、在旋转的过程中,线段AF与EC总相等 |
| C、当旋转角为45°时,四边形BEDF一定为菱形 |
| D、当旋转角为45°时,四边形ABEF一定为等腰梯形 |