ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏßy=ax2-£¨a+c£©x+c£¨ÆäÖÐa¡ÙcÇÒa¡Ù0£©£®
£¨1£©Çó´ËÅ×ÎïÏßÓëxÖáµÄ½»µã×ø±ê£»£¨ÓÃa£¬cµÄ´úÊýʽ±íʾ£©
£¨2£©Èô¾¹ý´ËÅ×ÎïÏß¶¥µãAµÄÖ±Ïßy=-x+kÓë´ËÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪB£¨
£¬-c£©£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©µãPÔÚ£¨2£©ÖÐxÖáÉÏ·½µÄÅ×ÎïÏßÉÏ£¬Ö±Ïßy=-x+kÓë yÖáµÄ½»µãΪC£¬Èôtan¡ÏPOB=
tan¡ÏPOC£¬ÇóµãPµÄ×ø±ê£»
£¨4£©Èô£¨2£©ÖеĶþ´Îº¯ÊýµÄ×Ô±äÁ¿xÔÚn¡Üx£¼n+1£¨nΪÕýÕûÊý£©µÄ·¶Î§ÄÚȡֵʱ£¬¼ÇËüµÄÕûÊýº¯ÊýÖµµÄ¸öÊýΪN£¬ÔòN¹ØÓÚnµÄº¯Êý¹ØÏµÊ½Îª______£®
½â£º£¨1£©Å×ÎïÏßy=ax2-£¨a+c£©x+cÓëxÖá½»µãµÄºá×ø±êÊǹØÓÚxµÄ·½³Ìax2-£¨a+c£©x+c=0£¨ÆäÖÐa¡Ù0£¬a¡Ùc£©µÄ½â£®
½âµÃx1=1£¬
£®
¡àÅ×ÎïÏßÓëxÖá½»µãµÄ×ø±êΪ£¨1£¬0£©£¬
£¨2£©Å×ÎïÏßy=ax2-£¨a+c£©x+cµÄ¶¥µãAµÄ×ø±êΪ
£®
¡ß¾¹ý´ËÅ×ÎïÏß¶¥µãAµÄÖ±Ïßy=-x+kÓë´ËÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪ
£¬
¡à
ÓÉ¢ÛµÃc=0£®
½«Æä´úÈë¢Ù¡¢¢ÚµÃ
½âµÃa=-2£®
¡àËùÇóÅ×ÎïÏߵĽâÎöʽΪy=-2x2+2x£®
£¨3£©×÷PE¡ÍxÖáÓÚµãE£¬PF¡ÍyÖáÓÚµãF£®£¨Èçͼ£©
Å×ÎïÏßy=-2x2+2xµÄ¶¥µãAµÄ×ø±ê
£¬
µãBµÄ×ø±êΪ£¨1£¬0£©£¬µãCµÄ×ø±êΪ£¨0£¬1£©£®
ÉèµãPµÄ×ø±êΪ£¨m£¬n£©£®
¡ßµãPÔÚxÖáÉÏ·½µÄÅ×ÎïÏßy=-2x2+2xÉÏ£¬
¡àn=-2m2+2m£¬ÇÒ0£¼m£¼1£¬
£®
¡à
£¬
£®
¡ß
£¬
¡àm2=4n2£®
½âµÃm=2n£¬»òm=-2n£¨ÉáÈ¥£©£®
½«m=2n´úÈën=-2m2+2m£¬µÃ8n2-3n=0£®
½âµÃ
£¬n2=0£¨ÉáÈ¥£©£®
¡à
£®
¡àµãPµÄ×ø±êΪ
£®
£¨4£©N¹ØÓÚnµÄº¯Êý¹ØÏµÊ½ÎªN=4n£®
˵Ã÷£º¶þ´Îº¯Êýy=-2x2+2xµÄ×Ô±äÁ¿xÔÚn¡Üx£¼n+1£¨nΪÕýÕûÊý£©µÄ·¶Î§ÄÚȡֵ£¬´ËʱyËæxµÄÔö´ó¶ø¼õС£¬
¡à-2n2-2n£¼y¡Ü-2n2+2n£¬
ÆäÖеÄÕûÊýÓÐ-2n2-2n+1£¬-2n2-2n+2£¬-2n2+2n£®N=£¨-2n2+2n£©-£¨-2n2-2n£©=4n£®
·ÖÎö£º£¨1£©ÀûÓöþ´Îº¯ÊýÓëxÖáÏཻy=0£¬¼´¿É½â¾ö£®
£¨2£©Ê×Ïȱíʾ³ö¶þ´Îº¯ÊýµÄ¶¥µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³ö£®
£¨3£©×÷PE¡ÍxÖáÓÚµãE£¬PF¡ÍyÖáÓÚµãF£¬ÀûÓÃÈý½Çº¯Êý¹ØÏµ½â¾ö£®
£¨4£©½èÖú×Ô±äÁ¿µÄȡֵ·¶Î§£¬´úÈë¶þ´Îº¯Êý½âÎöʽ£¬¼´¿É½â¾ö£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýÓëxÖáµÄ½»µã×ø±ê£¬ÒÔ¼°¶þ´Îº¯Êý¶¥µã×ø±êµÄ±íʾ·½·¨£¬¶þ´Îº¯Êý½âÎöʽµÄÇ󷨵ȣ¬×ÛºÏÐԱȽÏÇ¿£®
½âµÃx1=1£¬
¡àÅ×ÎïÏßÓëxÖá½»µãµÄ×ø±êΪ£¨1£¬0£©£¬
£¨2£©Å×ÎïÏßy=ax2-£¨a+c£©x+cµÄ¶¥µãAµÄ×ø±êΪ
¡ß¾¹ý´ËÅ×ÎïÏß¶¥µãAµÄÖ±Ïßy=-x+kÓë´ËÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪ
¡à
ÓÉ¢ÛµÃc=0£®
½«Æä´úÈë¢Ù¡¢¢ÚµÃ
½âµÃa=-2£®
¡àËùÇóÅ×ÎïÏߵĽâÎöʽΪy=-2x2+2x£®
£¨3£©×÷PE¡ÍxÖáÓÚµãE£¬PF¡ÍyÖáÓÚµãF£®£¨Èçͼ£©
µãBµÄ×ø±êΪ£¨1£¬0£©£¬µãCµÄ×ø±êΪ£¨0£¬1£©£®
ÉèµãPµÄ×ø±êΪ£¨m£¬n£©£®
¡ßµãPÔÚxÖáÉÏ·½µÄÅ×ÎïÏßy=-2x2+2xÉÏ£¬
¡àn=-2m2+2m£¬ÇÒ0£¼m£¼1£¬
¡à
¡ß
¡àm2=4n2£®
½âµÃm=2n£¬»òm=-2n£¨ÉáÈ¥£©£®
½«m=2n´úÈën=-2m2+2m£¬µÃ8n2-3n=0£®
½âµÃ
¡à
¡àµãPµÄ×ø±êΪ
£¨4£©N¹ØÓÚnµÄº¯Êý¹ØÏµÊ½ÎªN=4n£®
˵Ã÷£º¶þ´Îº¯Êýy=-2x2+2xµÄ×Ô±äÁ¿xÔÚn¡Üx£¼n+1£¨nΪÕýÕûÊý£©µÄ·¶Î§ÄÚȡֵ£¬´ËʱyËæxµÄÔö´ó¶ø¼õС£¬
¡à-2n2-2n£¼y¡Ü-2n2+2n£¬
ÆäÖеÄÕûÊýÓÐ-2n2-2n+1£¬-2n2-2n+2£¬-2n2+2n£®N=£¨-2n2+2n£©-£¨-2n2-2n£©=4n£®
·ÖÎö£º£¨1£©ÀûÓöþ´Îº¯ÊýÓëxÖáÏཻy=0£¬¼´¿É½â¾ö£®
£¨2£©Ê×Ïȱíʾ³ö¶þ´Îº¯ÊýµÄ¶¥µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³ö£®
£¨3£©×÷PE¡ÍxÖáÓÚµãE£¬PF¡ÍyÖáÓÚµãF£¬ÀûÓÃÈý½Çº¯Êý¹ØÏµ½â¾ö£®
£¨4£©½èÖú×Ô±äÁ¿µÄȡֵ·¶Î§£¬´úÈë¶þ´Îº¯Êý½âÎöʽ£¬¼´¿É½â¾ö£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýÓëxÖáµÄ½»µã×ø±ê£¬ÒÔ¼°¶þ´Îº¯Êý¶¥µã×ø±êµÄ±íʾ·½·¨£¬¶þ´Îº¯Êý½âÎöʽµÄÇ󷨵ȣ¬×ÛºÏÐԱȽÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿