题目内容
若=3,则x= .
问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M-N=a2+b2-2ab=(a-b)2.∵a≠b,∴(a-b)2>0.∴M-N>0.∴M>N.类比应用【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。 ①这样的长方形可以画 个;②所画的长方形中哪个周长最小?为什么?拓展延伸 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?
数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN. (1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.证明:在AB上截取EA=MC,连结EM,得△AEM.∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.∴△BEM为等边三角形.∴∠6=60°.∴∠5=180°-∠6=120°.………②∴由①②得∠MCN=∠5.在△AEM和△MCN中,∵________________________________∴△AEM≌△MCN (ASA).∴AM=MN.(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn= °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)