题目内容
(2006•徐州)在平面直角坐标系中,已知矩形ABCD中,边AB=2,边AD=1,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形折叠,使点A落在边DC上,设点A′是点A落在边DC上的对应点.(1)当矩形ABCD沿直线y=-
(2)当矩形ABCD沿直线y=kx+b折叠时,
①求点A′的坐标(用k表示);求出k和b之间的关系式;
②如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k的取值范围.(将答案直接填在每种情形下的横线上)k的取值范围是______;k的取值范围是______;k的取值范围是______.
【答案】分析:(1)设直线y=-
x+b与CD交于点E,与OB交于点F,连接A′O,则OE=b,OF=2b,设点A′的坐标为(a,1),根据△DOA′∽△OFE,所得
,即
,所以a=
.可得点A′的坐标为(
,1),连接A′E,则A′E=OE=b,根据勾股定理有A′E2=A′D2+DE2,即b2=(
)2+(1-b)2,解得b=
;
(2)设直线y=kx+b与OD交于点E,与OB交于点F,连接A′O,则OE=b,
,设点A′的坐标为(a,1)可证△DOA′∽△OFE,所以
,即
,所以a=-k,A′点的坐标为(-k,1),连接A′E,在Rt△DEA′中,DA′=-k,DE=1-b,A′E=b,根据A′E2=A′D2+DE2,得b2=(-k)2+(1-b)2,所以b=
.
(3)根据图象和矩形的边长可直接得出k的取值范围,在题中图2中:-2≤k≤-1;图3中:-1≤k≤
;图4中:-2+
≤k≤0.
解答:
解:(1)如图1,设直线y=-
x+b与CD交于点E,与OB交于点F,与y轴交于G点,连接A'O,则OE=b,OF=2b,设点A′的坐标为(a,1),
∵∠DOA′+∠A′OF=90°,∠OFE+∠A′OF=90°,
∴∠DOA′=∠OFE,
∴△DOA′∽△OFE,
∴
,即
,
∴a=
,
∴点A′的坐标为(
,1),
连接A′E,则A′E=OE=b,
在Rt△DEA′中,根据勾股定理有A′E2=A′D2+DE2,
即b2=(
)2+(1-b)2,
解得b=
;
(2)如图1,设直线y=kx+b与OD交于点E,与OB交于点F,连接A'O,则:
OE=b,
,
设点A′的坐标为(a,1),
∵∠DOA′+∠A′OF=90°,∠OFE+∠A'OF=90度,
∴∠DOA′=∠OFE,
∴△DOA′∽△OFE,
∴
,即
,
∴a=-k.
∴A′点的坐标为(-k,1).(7分)
连接A′E,在Rt△DEA′中,DA′=-k,DE=1-b,A′E=b.
∵A′E2=A′D2+DE2,
∴b2=(-k)2+(1-b)2,
∴b=
;
(3)在题中图2中:-2≤k≤-1;
图3中:-1≤k≤
;
图4中:-2+
≤k≤0.
点评:这是一道有关折叠的问题,主要考查一次函数、四边形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会.
(2)设直线y=kx+b与OD交于点E,与OB交于点F,连接A′O,则OE=b,
(3)根据图象和矩形的边长可直接得出k的取值范围,在题中图2中:-2≤k≤-1;图3中:-1≤k≤
解答:
∵∠DOA′+∠A′OF=90°,∠OFE+∠A′OF=90°,
∴∠DOA′=∠OFE,
∴△DOA′∽△OFE,
∴
∴a=
∴点A′的坐标为(
连接A′E,则A′E=OE=b,
在Rt△DEA′中,根据勾股定理有A′E2=A′D2+DE2,
即b2=(
解得b=
(2)如图1,设直线y=kx+b与OD交于点E,与OB交于点F,连接A'O,则:
OE=b,
设点A′的坐标为(a,1),
∵∠DOA′+∠A′OF=90°,∠OFE+∠A'OF=90度,
∴∠DOA′=∠OFE,
∴△DOA′∽△OFE,
∴
∴a=-k.
∴A′点的坐标为(-k,1).(7分)
连接A′E,在Rt△DEA′中,DA′=-k,DE=1-b,A′E=b.
∵A′E2=A′D2+DE2,
∴b2=(-k)2+(1-b)2,
∴b=
(3)在题中图2中:-2≤k≤-1;
图3中:-1≤k≤
图4中:-2+
点评:这是一道有关折叠的问题,主要考查一次函数、四边形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会.
练习册系列答案
相关题目