题目内容

如图,是用火柴棒拼成的图形,则第n个图形需 2n+1 根火柴棒.

考点:

规律型:图形的变化类.

分析:

按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加n﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1)进而得出答案.

解答:

解:根据图形可得出:

当三角形的个数为1时,火柴棒的根数为3;

当三角形的个数为2时,火柴棒的根数为5;

当三角形的个数为3时,火柴棒的根数为7;

当三角形的个数为4时,火柴棒的根数为9;

由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.

故答案为:2n+1.

点评:

此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网