题目内容

如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.

(1)求正方形ABCD的边长.

(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.

(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标.

(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点     个.

解:(1)作BF⊥y轴于F。

因为A(0,10),B(8,4)

所以FB=8,FA=6

所以

(2)由图2可知,点P从点A运动到点B用了10秒。

又因为AB=10,10÷10=1

所以P、Q两点运动的速度均为每秒1个单位。

(3)方法一:作PG⊥y轴于G

则PG//BF

所以,即

所以

所以

因为OQ=4+t

所以

因为

时,S有最大值。

方法二:当t=5时,OG=7,OQ=9

*

设所求函数关系式为

因为抛物线过点(10,28),(5,

所以

所以

所以

因为

时,S有最大值。

此时

所以点P的坐标为()。

(4)当点P沿AB边运动时,∠OPQ由锐角→直角→钝角;当点P沿BC边运动时,∠OPQ由钝角→直角→锐角(证明略),故符合条件的点P有2个。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网