题目内容
化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是_____.
已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为 ( ).
A. 4 B. 5 C. 6 D. 7
已知样本容量是40,在样本的频数分布直方图中各小矩形的高之比依次为3:2:4:1,则第二小组的频数为________,第四小组的频率为________.
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为_____.
如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40,24,则AB为( )
A. 8 B. 12 C. 16 D. 20
如图所示,⊙O的直径是4 cm,C是的中点,弦AB,CD相交于P,CD=cm,求∠APC的度数.
利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.
右图是某汽车行驶的路程s(km)与时间t(分钟) 的函数关系图。
观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是 ;
(2)汽车在中途停了多长时间? ;
(3)当16≤t ≤30时,求S与t的函数关系式。