题目内容
如图,在(1)AB∥CD;(2)AD∥BC;(3)∠A=∠C中,请你选取其中的两个作为条件,另一个作为结论,你能说明它的正确性吗?
我选取的条件是 ,结论是 .
我的理由是:
略;
如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )
A.α B.180°-2α C.360°-4α D.2α-60°
如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.
(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,请直接写出的值.
若是完全平方式,则的值为 .
阅读下列文字:
我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.
请解答下列问题:
(1)写出图2中所表示的数学等式;
(2)利用⑴中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,请利用所给的纸片拼出一个长方形,使它的面积为2a2+5ab+2b2,把拼出的图形画在图3右侧的方框内,并拼出的图形将多项式2a2+5ab+2b2分解因式。
矩形具有而菱形不具有的性质是( )
A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等
先化简,再求值:,其中
在数据分析的过程中,有人对两个不同城市学生的数学成绩进行了分析,结果发现
这两座城市统计的方差值都是10.34,那么下列说法中,正确的是
(A)两城市学生的成绩一样 (B)两城市学生的数学平均分一样
(C)两城市数学成绩的中位数一样 (D)两城市学生数学成绩波动情况一样