题目内容
已知关于的一元二次方程.
(1)求证:这个一元二次方程总有两个实数根;
(2)若,是关于的一元二次方程的两根,且,求的值.
解方程:
(1)=1+
(2)﹣=.
如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为米,广场长为米,宽为米。
(1)请列式表示广场空地的面积;
(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留)。
已知点A和点B在同一数轴上, 点A表示数-2,点B和点A相距5个单位长度, 则点B表示的数是 ( )
A.3 B.-7 C.3或-7 D.3或7
如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.
(1)如图1,若∠BAC=60°,求的值;
(2)如图2,CF⊥AB于F,交BD于G,求证:CG=FG
如图,在平面直角坐标系中,⊙P与轴相切于点C,⊙P的半径是4,直线被⊙P截得的弦AB的长为,则点P的坐标为 .
如图,正方形ABCD中,AB=8,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为,△OEF的面积为S(),则S()与的函数关系可用图象表示为( )
计算:()×+()÷-(-2)
某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为A种每台1 500元,B种每台2 100元,C种每台2 500元.
(1)若该家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若该家电商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?