题目内容

(1)判断下列各式是否正确.你认为成立的,请在括号内打“∨”,不成立的打“×”.
2+
2
3
=2
2
3
  ②
3+
3
8
=3
3
8
4+
4
15
=4
4
15
  ④
5+
5
24
=5
5
24

(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:
n+
n
n2-1
=n
n
n2-1
n+
n
n2-1
=n
n
n2-1

(3)请用数学知识说明你所写式子的正确性
等式左边=
n(1+
1
n2-1
)
=
n•
n2
n2-1
=n
n
n2-1
=右边,
n+
n
n2-1
=n
n
n2-1
等式左边=
n(1+
1
n2-1
)
=
n•
n2
n2-1
=n
n
n2-1
=右边,
n+
n
n2-1
=n
n
n2-1
分析:(1)利用二次根式的运算法则计算得到结果,即可做出判断;
(2)归纳总结得到一般性规律,写出即可;
(3)利用二次根式的性质及化简公式证明即可.
解答:解:(1)①
2+
2
3
=
8
3
=2
2
3
,本选项正确;
3+
3
8
=
27
8
=3
3
8
,本选项正确;
4+
4
15
=
64
15
=4
4
15
,本选项正确;
5+
5
24
=
125
24
=5
5
24
,本选项正确;

(2)归纳总结得:
n+
n
n2-1
=n
n
n2-1


(3)等式左边=
n(1+
1
n2-1
)
=
n•
n2
n2-1
=n
n
n2-1
=右边,
n+
n
n2-1
=n
n
n2-1

故答案为:①√;②√;③√;④√;(2)
n+
n
n2-1
=n
n
n2-1
;(3)等式左边=
n(1+
1
n2-1
)
=
n•
n2
n2-1
=n
n
n2-1
=右边,则
n+
n
n2-1
=n
n
n2-1
点评:此题考查了算术平方根,熟练掌握定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网