题目内容

如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是


  1. A.
    相离
  2. B.
    相切
  3. C.
    相交
  4. D.
    相切或相交
B
分析:作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.
解答:解:作CD⊥AB于点D.
∵∠B=30°,BC=4cm,
∴CD=BC=2cm,
即CD等于圆的半径.
∵CD⊥AB,
∴AB与⊙C相切.
故选B.
点评:此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:
当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网