题目内容
在等腰直角△ABC中,AB=BC=5,P是△ABC内一点,且PA=
,PC=5,则PB=________.
分析:先依据题意作一三角形,再结合图形进行分析,在等腰直角△ABC中,已知PA、PC,通过辅助线求出AD,DC及PD边的长,进而PB可求.
解答:
在△APD中,PA2=PD2+AD2=5,
在△PCD中,PC2=PD2+CD2,且AD+CD=5
解之得,AD=
在Rt△ABC中,BE=AE=
所以在Rt△BPF中,PB2=PF2+BF2=
所以PB=
点评:熟练掌握勾股定理的运用.会画出简单的图形辅助解题.
练习册系列答案
相关题目