题目内容
4.分析 根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.
解答 解:∵DE是AB的垂直平分线,
∴AD=BD,
∴∠DAE=∠B=30°,
∴∠ADC=60°,
∴∠CAD=30°,
∴AD为∠BAC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=3,
∵∠B=30°,
∴BD=2DE=6,
故答案为:6.
点评 本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.
练习册系列答案
相关题目
15.单项式xm-1y3与4xyn的和是单项式,则nm的值是( )
| A. | 3 | B. | 6 | C. | 8 | D. | 9 |
12.在-2,-1,0,2这四个数中,最小的数是( )
| A. | -2 | B. | -1 | C. | 0 | D. | 2 |
19.
如图是一个三棱柱笔筒,则该物体的主视图是( )
| A. | B. | C. | D. |
9.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )
| A. | $\frac{3}{10}$ | B. | $\frac{3}{20}$ | C. | $\frac{7}{20}$ | D. | $\frac{7}{10}$ |