题目内容
方程4x4-20=0的解是______________.
因式分【解析】9a3b﹣ab=_____.
某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
如图,ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF; (2)BE∥DF
一个一次函数的图像经过点(0,2),且与两坐标轴围成的三角形面积为4,则一次函数解析式是__________________.
一次函数y=mx-3-m的图像不经过第一象限,那么m的取值范围是__________.
定义:在平面直角坐标系中,过抛物线与y轴的交点作y轴的垂线,则称这条垂线是该抛物线的伴随直线.例如:抛物线的伴随直线为直线.抛物线的伴随直线l与该抛物线交于点A、D(点A在y轴上),该抛物线与x轴的交点为B(-1,0)和C(点C在点B的右侧).
(1)若直线l是y=2,求该抛物线对应的函数关系式.
(2)求点D的坐标(用含m的代数式表示).
(3)设抛物线的顶点为M,作OA的垂直平分线EF,交OA于点E,交该抛物线的对称轴于点F.
①当△ADF是等腰直角三角形时,求点M的坐标.
②将直线EF沿直线l翻折得到直线GH,当点M到直线GH的距离等于点C到直线EF的距离时,直接写出m的值.
如图,直线l是⊙O的切线,点A为切点,B为直线l上一点,连接OB交⊙O于点C,D是优弧AC上一点,连接AD、CD.若∠ABO=40°.则∠D的大小是( )
A. 50° B. 40° C. 35° D. 25°
如图,在平面直角坐标系中,直线 交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥DC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=_____,若S=S1+S2+S3+…+Sn,当n无限大时,S的值无限接近于_____.