题目内容
已知二次函数y=ax2+bx+c(a>0,b<0)的图象与一次函数y=x+1的图象相交于A(x1,y1),B(x2,y2)且x1<x2,若4a-2b+c>0,a-b+c<0,则x1的值应满足
- A.-3<x1<-2
- B.-2<x1<-1
- C.-1<x1<0
- D.0<x1<1
B
分析:由二次函数y=ax2+bx+c(a>0,b<0)的图象与一次函数y=x+1的图象相交于A(x1,y1),B(x2,y2)且x1<x2,可得开口向上,对称轴在y轴右侧,又由4a-2b+c>0,a-b+c<0,可知当x=-2时,y=4a-2b+c>0,当x=-1时,y=a-b+c<0,即可得x1的取值范围.
解答:∵二次函数y=ax2+bx+c(a>0,b<0)的图象与一次函数y=x+1的图象相交于A(x1,y1),B(x2,y2),
∴开口向上,对称轴在y轴右侧,
∵当x=-2时,y=4a-2b+c>0,
当x=-1时,y=a-b+c<0,
∴-2<x1<-1.
故选B.
点评:此题考查了点与函数的关系以及a,b,c与函数图象的关系.此题难度适中,解题的关键是数形结合思想的应用.
分析:由二次函数y=ax2+bx+c(a>0,b<0)的图象与一次函数y=x+1的图象相交于A(x1,y1),B(x2,y2)且x1<x2,可得开口向上,对称轴在y轴右侧,又由4a-2b+c>0,a-b+c<0,可知当x=-2时,y=4a-2b+c>0,当x=-1时,y=a-b+c<0,即可得x1的取值范围.
解答:∵二次函数y=ax2+bx+c(a>0,b<0)的图象与一次函数y=x+1的图象相交于A(x1,y1),B(x2,y2),
∴开口向上,对称轴在y轴右侧,
∵当x=-2时,y=4a-2b+c>0,
当x=-1时,y=a-b+c<0,
∴-2<x1<-1.
故选B.
点评:此题考查了点与函数的关系以及a,b,c与函数图象的关系.此题难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |