题目内容
21
21
.分析:连接EB、AE,OJ、OI,可得OHCI是正方形,且边长是4,可设BD=x,AD=y,则BD=BH=x,AD=AI=y,分别利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21.
解答:
解:∵正方形DEFG的面积为100,
∴正方形DEFG边长为10.
连接EB、AE,OI、OJ,
∵AC、BC是⊙O的切线,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四边形OICJ是正方形,且边长是4,
设BD=x,AD=y,则BD=BI=x,AD=AJ=y,
在Rt△ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在Rt△AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
∴ED2=AD•BD,即102=x•y②.
解①、②得x+y=21,即半圆的直径AB=21.
故答案为:21.
∴正方形DEFG边长为10.
连接EB、AE,OI、OJ,
∵AC、BC是⊙O的切线,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四边形OICJ是正方形,且边长是4,
设BD=x,AD=y,则BD=BI=x,AD=AJ=y,
在Rt△ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在Rt△AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
∴ED2=AD•BD,即102=x•y②.
解①、②得x+y=21,即半圆的直径AB=21.
故答案为:21.
点评:本题综合考查的是三角形的内切圆与内心,根据题意作出辅助线,构造出直角三角形,利用相似三角形的性质求解是解答此题的关键.
练习册系列答案
相关题目