题目内容
化简: =( )
A. 0 B. 1 C. x D.
看图填空,BE∥CD,∠C=∠E,试说明∠A=∠ADE.
推理过程:∵BE∥CD(已知)
∴ ( )
∵(已知)
∴BC∥ ( )
∴( )
下列命题正确的是( )
A. 相等的角是对顶角; B. a、b、c是直线,若a//b,b//c,则a//c;
C. 同位角相等; D. a、b、c是直线,若a⊥b,b⊥c,则a⊥c。
已知是分式方程的解,则实数=_________.
下列各式变形正确的是( )
A. B.
C. D.
如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
某市长途客运站每天6:30—7:30开往某县的三辆班车票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序,两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:
(1)三辆车按出现的先后顺序共有哪几种可能?
(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?
先化简,再求代数式的值,其中, .
由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )
A. 精确到十分位,有2个有效数字 B. 精确到个位,有2个有效数字
C. 精确到百位,有2个有效数字 D. 精确到千位,有4个有效数字