题目内容


己知:如图10.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC干点F,交⊙O于点D,DF⊥AB于点E,且交AC于点P,连结AD。

(1)求证:∠DAC=∠DBA

(2)求证:P处线段AF的中点

(3)若⊙O的半径为5,AF=,求tan∠ABF的值。

 


(1)∵BD平分∠CBA,∴∠CBD=DBA  

∵∠DAC与∠CBD都是弧CD所对的圆周角,∴DAC=∠CBD        (1分)

DAC =∠DBA                                             (2分)

(2)∵AB为直径,∴∠ADB=90°                               (3分)

又∵DEAB于点E,∴∠DEB=90°

∴∠ADE +∠EDB=ABD +∠EDB=90°

∴∠ADE=ABD=DAP                                          (4分)

PD=PA                                                      (5分)

又∵∠DFA +∠DAC=ADE +∠PD F=90°且∠ADE=DAC

∴∠PDF=PFD                                                (6分)

PD=PF

PA= PF,P是线段AF的中点                                (7分)

(3)∵∠DAF =DBA,∠ADB=FDA=90°

     ∴△FDA ∽△ADB                                         (8分)

     ∴                                             (9分)

∴在RtABD 中,tanABD=

tanABF=                                                (10分)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网